
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PROGRAMMING IN C 



Answer.:-  C programming language stands as a fundamental pillar in the world of 
software development, renowned for its efficiency, flexibility, and robustness. Its 
architecture and features have made it a language of choice for various applications, 
from embedded systems to system-level software. Let's delve into its key attributes: 

Efficient Memory Usage and Pointers: C's efficient memory management, aided by 
pointers, allows direct access to memory locations. This feature is instrumental in 
tasks like memory allocation, deallocation, and manipulation. Pointers enable 
dynamic memory allocation, facilitating efficient use of resources and helping 
optimize performance in resource-constrained environments. 

Procedural and Structured Language: C follows a procedural paradigm, executing 
instructions sequentially. Its structured nature enables breaking down complex 
problems into smaller, manageable modules or functions. This promotes reusability 
and code readability, enhancing the maintainability of software projects. 

Portability and Platform Independence: One of C's standout features is its 
portability. Code written in C can be compiled and executed on various platforms with 
minimal modifications. This characteristic stems from its high-level structural 
elements and low-level functionalities, making it an ideal choice for cross-platform 
development. 

Rich Standard Libraries: C offers a rich set of standard libraries that provide a wide 
range of functions for performing diverse tasks. Libraries like `stdio.h` for I/O 
operations, `stdlib.h` for memory management, and `math.h` for mathematical 
functions extend the language's capabilities. 

Pointer Arithmetic and Low-Level Manipulation: C's support for pointers allows 
direct memory access, making it highly efficient for tasks like data structure 
manipulation and array handling. The language's capability for bitwise operations 
enables low-level bit manipulation, critical in scenarios like device driver 
development and embedded systems programming. 

Extensibility and Recursion: C supports modularity through functions and file 
inclusion, allowing code to be divided into smaller, more manageable modules. 
Recursion, a feature allowing a function to call itself, enhances the language's 
capabilities in solving complex problems. 

Preprocessor Directives and Assembly Language Integration: C's preprocessor 
directives, such as `#define` and `#include`, enable macro definitions and header file 
inclusions before actual compilation, enhancing code modularity and reusability. 
Additionally, its compatibility with assembly language facilitates hardware-level 
programming and performance optimization. 

Question 1.)  Describe various features of the C programming 
language . 

SET-I 



These features collectively make C a versatile language suitable for diverse 
applications. Its ability to blend low-level access with high-level functionality 
provides developers with the tools needed to create efficient and robust applications 
across various domains. 

Question 2.) Explain various flow control statements in C with 
examples. 

Answer.:-  Flow control statements in C programming are constructs that determine the 
execution flow of a program based on specific conditions. They help in controlling the order 
in which statements are executed and allow the program to make decisions, loop through code 
blocks, or branch to different sections based on conditions. These statements are fundamental 
for creating algorithms and directing the flow of execution within a program. 

1.) Conditional Statements: 
a) if Statement: It's used to execute a block of code if a specified condition is true. 

Example: 
int num = 10; 
if (num > 0) { 
    printf("Number is positive\n"); 
} 

b) else if Statement: It's used to specify a new condition if the previous one is false. 
Example: 
int num = 0; 
if (num > 0) { 
    printf("Number is positive\n"); 
} else if (num < 0) { 
    printf("Number is negative\n"); 
} else { 
    printf("Number is zero\n"); 
} 

2.) Loops: 
a) for Loop: It's used to execute a block of code repeatedly for a fixed number of 

times. Example: 
for (int i = 0; i < 5; i++) { 
    printf("%d\n", i); 
} 

b) while Loop: It's used to execute a block of code as long as the condition is true. 
Example: 
int i = 0; 
while (i < 5) { 
    printf("%d\n", i); 
    i++; 
} 

c) do-while Loop: It's similar to the while loop, but it guarantees that the code block 
runs at least once before the condition is checked. Example: 
int i = 0; 
do { 
    printf("%d\n", i); 
    i++; 
} while (i < 5); 



3.) Branching Statements:  
a) switch Statement: It's used to perform different actions based on different 

conditions. Example: 
int choice = 2; 
switch (choice) { 
    case 1: 
        printf("Option 1 chosen\n"); 
        break; 
    case 2: 
        printf("Option 2 chosen\n"); 
        break; 
    default: 
        printf("Invalid choice\n"); 
} 

b) goto Statement: It's used to transfer control to a labeled statement within the 
same function. Example: 
int num = 1; 
if (num == 1) { 
    goto print; 
} 
printf("This won't be printed\n"); 
print: 
printf("Number is 1\n"); 
 
 These flow control statements empower developers to create structured, flexible, 
and efficient programs by controlling the execution flow and handling different 
scenarios. They facilitate decision-making, looping, and branching within the 
program, enabling the creation of more dynamic and complex applications. 
However, the goto statement should be used judiciously due to its potential to 
complicate code readability and maintenance. 
 

Question 3.)  Define a function . List and explain the categories of 
user-defined function .  

Answer.:-  In programming, a function is a self-contained block of code designed to 
perform a specific task or operation. It encapsulates a sequence of statements that can 
be executed as a unit by invoking the function. Functions enhance the modularity, 
reusability, and readability of code by breaking it into smaller, manageable parts. 

There are several categories of user-defined functions: 

 

1. Simple Functions: These are the most basic type of functions, usually carrying out 
a specific task. They have a clear purpose and return a value or perform an action. For 
example, a function that calculates the square of a number. 

2.Parameterized Functions: Parameterized functions accept parameters or 
arguments, allowing the passing of values into the function. Parameters define the 
input required for the function to perform its task. For instance, a function that 
calculates the area of a rectangle, taking the length and width as parameters. 

 



3. Void Functions: Void functions do not return any value. They perform certain 
actions or operations but do not produce a result. Typically used for tasks like printing 
output or performing actions without returning a value. For example, a function that 
displays a message on the screen. 

4.Recursive Functions: Recursive functions call themselves, either directly or 
indirectly, to solve a problem by breaking it down into smaller instances of the same 
problem. Recursion involves a base case that stops the recursion and a recursive case 
that calls the function again with modified parameters. For instance, the factorial of a 
number can be calculated using a recursive function. 

5.Inline Functions: Inline functions are small functions defined with the `inline` 
keyword. Instead of making a function call, the code for the function is directly 
substituted at the point where it is called. This can improve performance by reducing 
the overhead of function calls, especially for small tasks. 

6.Nested Functions: Nested functions are functions defined within another function. 
These functions are only accessible from within the enclosing function and are often 
used to encapsulate functionality specific to that block of code. 

7.Library Functions: These functions are predefined in libraries and can be called in 
a program without having to define their implementation. Libraries provide a wide 
range of functions for tasks such as mathematical operations, I/O, string manipulation, 
and more. 

 

Each category of user-defined function has its advantages and use cases. Functions are 
essential for code organization, promoting reusability, and improving code readability. 
They allow programmers to break down complex problems into smaller, manageable 
tasks, making programs more modular and easier to maintain. 

 
 

 

 

 

 

 

 

 

 



 

Question 4.)  Define an array . How to initialize a one-dimensional 
array? Explain with suitable example .  

Answer.:-  An array is a fundamental data structure used in programming to 
store a collection of elements of the same type under a single name. It allows 
for efficient storage and manipulation of data by organizing elements in 
contiguous memory locations. 

 Key characteristics of an array: 
a.) Ordered Collection : Elements in an array are stored in a sequence , where 

each element has a unique index or position . 
b.) Fixed Size : Arrays have a predetermined size defined during declaration, 

which remains constant throughout the program unless explicitly resized (if 
the programming language allows dynamic resizing ) . 

c.) Homogeneous Elements : Arrays store elements of the same data type. For 
instance, an array can hold integers , characters , strings , or other data types , 
but all elements within a particular array must be of the same type . 

d.) Random Access : Elements in an array can be accessed directly by using their 
index , allowing for efficient retrieval and modification . 

 

Arrays are widely used due to their efficiency in accessing elements using 
their indices , making them suitable for various applications such as data 
storage , sorting algorithms , mathematical operations , and more . 

 
Initializing a one-dimensional array involves declaring the array and 
assigning initial values to its elements. In most programming languages , this 
process typically consists of specifying the data type , the array name , and the 
elements within square brackets [ ] or using predefined functions or 
constructors provided by the language . 

# include < stdio.h > 

int main() { 

    // Initializing an array of integers during declaration 

    int numbers[ 5 ] = { 1 , 2 , 3 , 4 , 5 } ; 

// Accessing and printing array elements 

    for (int i = 0; i < 5 ; + + I ) { 

        printf(" %d " ,  numbers [ i ]); 

    } 

return 0 ; 

}  

SET-II 



Question 5. a)  Define  Structure and write the general syntax for 
declaring and accessing members .  

Answer.:- A structure is a composite data type in programming that allows you to 
group together different variables under a single name. It enables the creation of a 
custom data type that can hold various data types within it . Structures help organize 
related data and simplify the handling of complex information by encapsulating 
multiple variables into a single unit . 

General Syntax for Declaring a Structure: 

In most programming languages ( such as C , C + + , and similar languages ) , the 
syntax for declaring a structure involves specifying the keyword struct , followed by 
the structure ' s name , and defining its members inside curly braces { } : 

// Declaring a structure in C 

struct Person { 

    char name [ 50 ] ; 

    int age ; 

    float height ; 

} ; 

This example defines a structure named Person containing three members: name ( an 
array of characters ) , age ( an integer  ) , and height ( a floating-point number ) . 

Accessing Members of a Structure: 

Once a structure is defined, you can create variables of that structure type and access 
its members using the dot . operator: 

# include < stdio.h > 

int main ( ) { 

    // Creating a variable of type Person 

    struct Person person1; 

// Accessing and assigning values to structure members 

    strcpy ( person1.name , "  Golu " ) ; 

    person1.age = 30 ; 

    person1.height = 175.5 ; 

// Accessing structure members and displaying their values 

    printf ( " Name: % s \ n " ,  person1.name );  

    printf ( " Age: % d \ n " , person1.age ) ; 

    printf ( " Height: % .2 f \ n " , person1.height ) ; 

 

    return 0; 

} 



In this code snippet , person1 is a variable of type Person, and the dot . operator is 
used to access and modify its individual members ( name , age , and height ) . It 
demonstrates how to assign values to the structure members and then print those 
values . 

Structures provide a way to encapsulate related data into a single unit , making code 
more organized , readable , and efficient by grouping variables that belong together. 
They play a crucial role in managing and manipulating complex data structures within 
programming languages . 

 

Question 5. b) List out the differences between unions and 
structures .   

Answer.:- In C programming, structures and unions are both used to group different 
data types together, but they have distinct characteristics and purposes. 

 

Structures: 

 

1. Data Organization: Structures allow bundling multiple variables of different data 
types under one name. Each member within a structure has its allocated memory. 

2. Memory Allocation:The memory allocated for a structure is the sum of the sizes 
of its members, including padding for alignment purposes. 

3. Usage: Structures are commonly used for creating complex data types, such as 
representing objects with multiple properties (e.g., a person with name, age, and 
address). 

4. Accessing Members: Members within a structure can be accessed individually 
using dot `.` notation. Each member retains its separate memory space. 

 

Example of a structure: 

struct Person { 

    char name[50]; 

    int age; 

    float height; 

}; 

Unions: 

1. Data Sharing: Unions allow different data types to share the same memory space. 
All members within a union share the same memory location, allowing only one 
member to hold a value at a time. 

2.Memory Allocation: Unions allocate memory enough to hold the largest member. 
The size of a union is determined by its largest member's size. 

3. Usage: Unions are useful when different data types need to be accessed using the 
same memory location or when optimizing memory usage is crucial. 



4. Accessing Members: Only one member of a union can hold a value at any given 
time. Accessing union members requires knowing which member is currently valid, as 
there's no direct way to identify it within the union itself. 

Example of a union: 

union Data { 

    int integerValue; 

    float floatValue; 

    char stringValue[20]; 

}; 

structures group related variables with their separate memory allocations, allowing 
simultaneous storage of different data types. Conversely, unions facilitate the sharing 
of memory space among its members, enabling efficient use of memory when only 
one member needs to be active at a time. Choosing between structures and unions 
depends on the specific requirements of the program, considering memory usage, data 
organization, and access patterns. 

 

Question 6.)  Explain the difference between static memory allocation and 
dynamic memory allocation in C. Explain various dynamic memory allocation 
function in c. 
Answer.:- In C, memory allocation refers to the process of setting aside memory 
space during program execution to hold variables, arrays, structures, or other data 
structures. Two primary methods for memory allocation exist: static and dynamic. 

Static Memory Allocation: 

Static memory allocation occurs at compile time, and memory is allocated before the 
program execution begins. Variables declared with a fixed size at compile time, such 
as global variables, static variables, and local variables defined within functions using 
the `static` keyword, are allocated statically. 

Characteristics of static memory allocation: 

1.Fixed Size:The size of memory allocated is determined at compile time and remains 
constant throughout the program's execution. 

2.Memory Allocation Location: Memory for static variables is allocated in the data 
segment of the program's memory. 

3. Scope: Static variables have a lifetime throughout the program's execution. 

 



Example of static memory allocation: 

void exampleFunction() { 

    static int staticVar; // Static variable allocation 

    // ... 

} 

Dynamic Memory Allocation: 

Dynamic memory allocation occurs during runtime, allowing the program to request 
memory dynamically as needed. This allocation is done explicitly using specific 
functions provided by C, such as `malloc()`, `calloc()`, `realloc()`, and `free()`. It 
enables the creation of variable-sized data structures, arrays, or objects based on 
runtime requirements. 

Characteristics of dynamic memory allocation: 

1.Variable Size: The size of memory allocated can be determined during runtime, 
allowing flexibility in memory usage. 

2. Memory Allocation Location: Dynamically allocated memory is obtained from 
the heap, a region of memory separate from the program's stack and data segments. 

3. Explicit Allocation and Deallocation: Memory is explicitly allocated and 
deallocated by the programmer using appropriate functions. 

4.Dynamic Data Structures: Dynamic allocation facilitates the creation of dynamic 
data structures like linked lists, trees, or resizable arrays. 

Various Dynamic Memory Allocation Functions in C: 

1. malloc(): Allocates a specific amount of memory in bytes and returns a pointer to the 
beginning of the allocated memory block. 
Example: 
int *ptr = (int *)malloc(5 * sizeof(int)); // Allocates memory for an array of 5 integers 

2. calloc(): Allocates a specific number of blocks of memory of a certain size and 
initializes them to zero. It returns a pointer to the allocated memory. 

     Example: 

int *ptr = (int *)calloc(5, sizeof(int)); // Allocates memory for an array of 5 integers 
initialized to zero 



3. realloc():Resizes the previously allocated memory block to a new specified size. It 
may change the memory location and returns a pointer to the new block. 
Example: 
ptr = (int *)realloc(ptr, 10 * sizeof(int)); // Resizes the allocated memory block for 10 
integers 

4. free(): Deallocates the dynamically allocated memory, freeing it up for future use. It 
should be used when the allocated memory is no longer needed to prevent memory 
leaks. 
Example: 
free(ptr); // Deallocates the memory block pointed to by ptr 
 
Dynamic memory allocation provides flexibility but requires careful management to 
avoid memory leaks (when memory isn't properly deallocated) or fragmentation 
issues. Proper usage of `malloc()`, `calloc()`, `realloc()`, and `free()` ensures efficient 
memory utilization and prevents memory-related errors in C programs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


